CAMBRIDGE
 international examinations

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07
MATHEMATICS AND HIGHER MATHEMATICS
Paper 7 (Probability and Statistics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	$9709 / 8719$	7

$\begin{gathered} 1 \quad \frac{1.9}{\sqrt{n}} \times 1.96<1 \\ n>13.9(13.87) \\ n=14 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	For equality or inequality involving width or equivalent and term in $1 / \sqrt{ } n$ and a z-value For correct inequality For solving a relevant equation For correct answer cwo
$\begin{aligned} & 2 \quad \lambda=4.5 \\ & \begin{aligned} \mathrm{P}(X=2,3,4) & =\mathrm{e}^{-4.5}\left(\frac{4.5^{2}}{2!}+\frac{4.5^{3}}{3!}+\frac{4.5^{4}}{4!}\right) \\ & =0.471 \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	For using Poisson approximation any mean For correct mean used For calculating $\mathrm{P}(2,3,4)$ their mean For correct numerical expression For correct answer NB Use of Normal can score B1 M1 SR Correct Bin scores M1 A1 A1 only
$\begin{aligned} & 3 \quad \mathrm{SU} \sim \mathrm{~N}(19,12) \\ & \qquad \begin{aligned} \mathrm{P}(\mathrm{~T}-\mathrm{SU}>0) & \text { or } \mathrm{P}(\mathrm{~T}-\mathrm{S}>5)=1-\Phi\left(\frac{0-1}{\sqrt{21}}\right) \\ & =\Phi(0.2182) \\ & =0.586 \end{aligned} \end{aligned}$	B1 M1 M1 M1 A1 [5]	For correct mean and variance. Can be implied if using $\mathrm{P}(\mathrm{T}-\mathrm{S}>5)$ in next part For consideration of $\mathrm{P}(\mathrm{T}-\mathrm{SU}>0)$ For summing their two variances For normalising and finding correct area from their values For correct answer
4 (i) $\begin{aligned} \lambda & =\frac{20}{80}=0.25 \\ \mathrm{P}(X \geq 3) & =1-P(X \leq 2) \\ & =1-\mathrm{e}^{-0.25}\left(1+0.25+\frac{0.25^{2}}{2}\right) \\ & =0.00216 \end{aligned}$ $\begin{aligned} & \text { (ii) } e^{\frac{-k}{80}}=0.9 \\ & \frac{-k}{80}=-0.10536 \\ & k=8.43 \end{aligned}$	B1 M1 M1 A1 [4] M1 M1 M1 A1 [4]	For $\lambda=0.25$ For calculating a relevant Poisson prob(any $\lambda)$ For calculating expression for $\mathrm{P}(X \geq 3)$ their λ For correct answer For using $\lambda=-\mathrm{t} / 80$ in an expression for $\mathrm{P}(0)$ For equating their expression to 0.9 For solving the associated equation For correct answer cwo
$5 \text { (i) } \begin{aligned} \mathrm{P}(\bar{X}>1800)=1-\Phi & \left(\frac{1800-1850}{117 / \sqrt{26}}\right) \\ & =\Phi(2.179) \\ & =0.985 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	For $117 / \sqrt{26}$ (or equiv) For standardising and use of tables For correct answer cwo

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	$9709 / 8719$	7

(ii) $\begin{aligned} & \mathrm{H}_{0}: \mu=1850 \\ & \mathrm{H}_{1}: \mu \neq 1850 \end{aligned}$ $\begin{aligned} \text { Test statistic } & =\frac{1833-1850}{117 / \sqrt{26}} \\ & =-0.7409 \end{aligned}$ Critical value $z= \pm 1.645$ Accept H_{0}, no significant change	B1 M1 A1 M1 Alft [5]	Both hypotheses correct Standardising attempt including standard error Correct test statistic (+/-) Comparing with $z= \pm 1.645,+$ with + or - with - (or equiv area comparison) ft 1 tail test $\mathrm{z}=1.282$ For correct conclusion on their test statistic and their z. No contradictions.
6 (i) (a) Rejecting H_{0} when it is true (b) Accepting H_{0} when it is false (ii) (a) $\begin{aligned} & \mathrm{P}(\mathrm{NNNNN}) \text { under } \mathrm{H}_{0}=(0.94)^{5} \\ & =0.7339 \\ & \mathrm{P}(\text { Type I error })=1-0.7339 \\ & =0.266 \end{aligned}$ (b) $\begin{aligned} & \mathrm{P}(\mathrm{NNNNN}) \text { under } \mathrm{H}_{1}=(0.7)^{5} \\ & =0.168 \\ & \mathrm{P}(\text { Type II }) \text { error }=0.168 \end{aligned}$	B1 B1 [2] M1* A1 M1* A1ft dep* [4] M1 M1 A1 [3]	Or equivalent For evaluating $\mathrm{P}(\mathrm{NNNNN})$ under H_{0} For correct answer (could be implied) For identifying the Type I error outcome For correct final answer SR If M0M0 allow B1 for $\operatorname{Bin}(5,0.94)$ used For $\operatorname{Bin}(5,0.7)$ used For $\mathrm{P}(\mathrm{NNNNN})$ under H_{1} For correct final answer
7 $\text { (i) } \begin{aligned} & \int_{0}^{\infty} k \mathrm{e}^{-3 x} d x=1 \\ & 0-\frac{-k}{3}=1 \Rightarrow k=3 \end{aligned}$ (ii) $\begin{aligned} & \int_{0}^{q 1} 3 \mathrm{e}^{-3 x} d x=0.25 \\ & {\left[-\mathrm{e}^{-3 x}\right]_{0}^{91}=0.25} \\ & -\mathrm{e}^{-3 \mathrm{q} 1}+1=0.25 \\ & 0.75=\mathrm{e}^{-3 \mathrm{qq1}} \\ & \mathrm{q}_{1}=0.0959 \end{aligned}$	M1 A1 [2] M1 M1 A1 [3]	For attempting to integrate from 0 to ∞ and putting the integral $=1$ For obtaining given answer correctly For equating $\int 3 e^{-3 x} d x$ to 0.25 (no limits needed) For attempting to integrate and substituting (sensible) limits and rearranging For correct answer

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	$9709 / 8719$	7

$\text { (iii) Mean } \begin{aligned} & =\int_{0}^{\infty} 3 x e^{-3 x} d x \\ & =\left[-x e^{-3 x}\right]_{0}^{\infty}-\int_{0}^{\infty}-\mathrm{e}^{-3 x} d x \\ & =\left[\frac{e^{-3 x}}{-3}\right]_{0}^{\infty} \\ & =0.333 \text { or } 1 / 3 \end{aligned}$	B1 M1 A1 M1 A1 A1 [6]	For correct statement for mean For attempting to integrate $3 \mathrm{xe}^{-3 x}$ (no limits needed) For $-x \mathrm{e}^{-3 x}$ or $-x \mathrm{e}^{-3 x} / 3$ For attempt $\int-\mathrm{e}^{-3 x} d x$ (their integral) For $0+\left[\frac{e^{-3 x}}{-3}\right]_{0}^{\infty}$ For correct answer

