

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

Page 1 Mark Sche	Mark Scheme			
A AND AS LEVEL – N	A AND AS LEVEL – NOVEMBER 2003			
$ \begin{array}{rcl} 1 & \frac{1.9}{\sqrt{n}} \times 1.96 < 1 \\ & n > 13.9 (13.87) \\ & n = 14 \end{array} $	M1 A1 M1 A1 [4]	For equality or inequality involving width or equivalent and term in $1/\sqrt{n}$ and a z-value For correct inequality For solving a relevant equation For correct answer cwo		
2 $\lambda = 4.5$ $P(X = 2, 3, 4) = e^{-4.5} \left(\frac{4.5^2}{2!} + \frac{4.5^3}{3!} + \frac{4.5^4}{4!} \right)$ = 0.471	M1 B1 M1 A1 A1 [5]	For using Poisson approximation any mean For correct mean used For calculating P(2, 3, 4) their mean For correct numerical expression For correct answer NB Use of Normal can score B1 M1 SR Correct Bin scores M1 A1 A1 only		
3 SU ~ N(19,12) P(T-SU > 0) or P(T-S > 5) = $1 - \Phi\left(\frac{0-1}{\sqrt{21}}\right)$ = $\Phi(0.2182)$ = 0.586	B1 M1 M1 M1 A1 [5]	For correct mean and variance. Can be implied if using $P(T-S>5)$ in next part For consideration of $P(T - SU > 0)$ For summing their two variances For normalising and finding correct area from their values For correct answer		
4 (i) $\lambda = \frac{20}{80} = 0.25$ P(X \ge 3) = 1 - P(X \le 2)	B1 M1	For $\lambda = 0.25$ For calculating a relevant Poisson prob(any		
$= 1 - e^{-0.25} (1 + 0.25 + \frac{0.25^2}{2})$ $= 0.00216$	M1 A1 [4]	λ) For calculating expression for P (X ≥ 3) their $λ$ For correct answer		
(ii) $e^{\frac{-k}{80}} = 0.9$ $\frac{-k}{80} = -0.10536$ k = 8.43	M1 M1 M1 A1 [4]	For using $\lambda = -t/80$ in an expression for P(0) For equating their expression to 0.9 For solving the associated equation For correct answer cwo		
5 (i) $P(\overline{X} > 1800) = 1 - \Phi\left(\frac{1800 - 1850}{117 / \sqrt{26}}\right)$ = $\Phi(2.179)$ = 0.985	B1 M1 A1 [3]	For $117/\sqrt{26}$ (or equiv) For standardising and use of tables For correct answer cwo		

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – NOVEMBER 2003	9709/8719	7

(ii) $H_0: \mu = 1850$	B1	Both hypotheses correct	
$H_1: \mu \neq 1850$			
Test statistic = $\frac{1833 - 1830}{117/\sqrt{26}}$	M1	Standardising attempt including standard error	
= -0.7409	A1	Correct test statistic (+/-)	
Critical value $z = \pm 1.645$	M1	Comparing with $z = \pm 1.645$, + with + or – with – (or equiv area comparison) ft 1 tail test z=1.282	
Accept H ₀ , no significant change		For correct conclusion on their test statistic and their <i>z</i> . No contradictions.	
	[5]		
 6 (i) (a) Rejecting H₀ when it is true (b) Accepting H₀ when it is false 	B1 B1 [2]	Or equivalent	
(ii) (a) P(NNNNN) under $H_0 = (0.94)^5$ = 0.7339 P(Type I error) = 1 - 0.7339 = 0.266		For evaluating P(NNNNN) under H_0 For correct answer (could be implied) For identifying the Type I error outcome For correct final answer SR If M0M0 allow B1 for Bin(5,0.94)used	
	[4]		
(b) P(NNNNN) under $H_1 = (0.7)^5$ = 0.168 P(Type II) error = 0.168	M1 M1 A1	For Bin(5,0.7) used For P(NNNN) under H ₁ For correct final answer	
~	[5]		
7 (i) $\int_{0}^{\infty} k e^{-3x} dx = 1$	M1	For attempting to integrate from 0 to ∞ and putting the integral = 1	
$0 - \frac{-k}{3} = 1 \Longrightarrow k = 3$	A1	For obtaining given answer correctly	
	[2]		
(ii) $\int_{0}^{q_{1}} 3e^{-3x} dx = 0.25$	M1	For equating $\int 3e^{-3x} dx$ to 0.25 (no limits	
$\left[-e^{-3x}\right]_{0}^{q_{1}}=0.25$	M1	needed) For attempting to integrate and substituting	
$-e^{-3q1} + 1 = 0.25$ $0.75 = e^{-3q1}$		(sensible) limits and rearranging	
$q_1 = 0.0959$	A1	For correct answer	
	[3]		

	Page 3	Mark Scheme			Syllabus	Paper	
		A AND AS LEVEL – NOVEMBER 2003			9709/8719	7	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.4					
(ii	i) Mean = $\int 3$	$3xe^{-3x} dx$	B1	For correct staten	nent for mean	-3x	
	Ō	[ _ ] *	M1	For attempting to needed)	integrate 3xe	(no limits	S
	=	$\left[-xe^{-3x}\right]_{0}^{\infty} - \int_{0}^{\infty} -e^{-3x} dx$	A1	For $-xe^{-3x}$ or $-xe^{-3x}$	$xe^{-3x}/3$		
	=	$\left[\frac{e^{-3x}}{-3}\right]^{\infty}$	M1	For attempt $\int -e^{-e^{-2}}$	$e^{-3x} dx$ (their	integral)	
	l	0	A1	For 0+ $\left[\frac{e^{-3x}}{-3}\right]_{0}^{3}$	∞ D		
	=	0.333 or 1/3	A1	For correct answ	wer		
			[6]				